§ 2.1. Электрические свойства различных видов поверхности Земли
В большинстве случаев приемная и передающая антенны или хотя бы одна из них размещаются на таких расстояниях от земной поверхности, при которых необходимо учитывать ее влияние на распространение радиоволн. При этом электрическое поле в месте приема можно представить как совокупность первичного поля, соответствующего полю вибратора в неограниченной однородной среде при отсутствии земной поверхности, и вторичного поля, обусловленного общим влиянием Земли на процессы распространения радиоволн.
Для определения величины напряженности электрического поля прежде всего необходимо знать электрические параметры - диэлектрическую проницаемость и проводимость различных видов земной поверхности. В табл. 2.1 указаны величины электрических параметров наиболее типичных видов земной поверхности в широком диапазоне волн. Эти величины определялись экспериментально по поглощению и отражению радиоволн различными поверхностями. Характерно, что для земной поверхности, однородной по глубине, во всем диапазоне радиоволн длиннее метровых параметры ε и γ не зависят от рабочей частоты, а на дециметровых и более коротких волнах ε уменьшается, а γ возрастает с повышением частоты.
Таблица 2.1. Электрические параметры различных видов земной поверхности
Большая часть (71%) земного шара представляет собой водную поверхность. Электрические свойства воды зависят от степени ее солености: с увеличением солености увеличивается удельная электрическая проводимость γ (на волнах длиннее 3 см).
Условно рассматривают морскую и пресную воду, хотя содержание солей в воде различных морей неодинаково. Вода пресных водоемов также содержит различные примеси. Поэтому в табл. 2.1 указаны пределы возможного изменения величины γ.
Электрические свойства почвы зависят от ее структуры, степени влажности, однородности, температуры. С увеличением влажности электропроводность почвы возрастает.
Земная поверхность неоднородна по глубине. Обычно ее можно представить как структуру, состоящую из верхнего слоя, имеющего толщину не больше нескольких метров, и нижнего, простирающегося до бесконечности. Соотношение диэлектрических проницаемостей и проводимостей слоев может быть различным. Так, если верхний слой более влажный, а ниже идет сухой грунт, то величины ε и γ в верхнем слое больше, чем в нижнем; при промерзании верхнего слоя его параметры ε и γ могут стать меньше, чем в нижнем слое.
Растительность, снег, лед, покрывающие почву, можно рассматривать как полупроводящие слои, лежащие на поверхности почвы.
Оценим соотношение плотности токов проводимости и токов смещения в различных видах земной поверхности. Используя формулу (1.38) и параметры ε и γ, указанные в табл. 2.1, видим, что для морской воды равенство плотности токов проводимости и токов смещения наступает при длине волны
Поэтому для радиоволн сантиметрового диапазона морскую воду можно считать диэлектриком.
Для влажной почвы условие 60γλ / ε = 1 выполняется на волне
Влажную почву можно рассматривать как диэлектрик для метровых и более коротких волн.
Таким образом, для волн сантиметрового диапазона все виды земной поверхности имеют свойства, близкие к свойствам идеального диэлектрика.
Коэффициенты поглощения α и фазовой скорости β при распространении радиоволн в морской воде и влажной почве, на низких частотах, как видно из формулы (1.57), возрастают с повышением частоты. На высоких частотах эти величины, согласно уравнениям (1.54) и (1.56), перестают изменяться с повышением частоты, как это имеет место в идеальном диэлектрике. Графики частотной зависимости α и υф представлены на рис. 2.1 и 2.2.
Рис. 2.1. График частотной зависимости фазовой скорости радиоволн в различных видах земной поверхности: 1 - влажная почва; 2 - морская вода
Рис. 2.2. График частотной зависимости коэффициента поглощения радиоволн в различных видах земной поверхности: 1 - влажная почва; 2 - морская вода
Из графиков видно, что поглощение радиоволн в морской воде значительно превышает поглощение радиоволн во влажной почве.
В табл. 2.2. показано, на каком расстоянии происходит ослабление напряженности поля волны в 106 раз (на 120 дБ) при распространении радиоволн во влажной почве и морской воде.
Таблица 2.2. Расстояние, на котором напряженность поля ослабляется на 120 дБ
Из табл. 2.2 следует, что для осуществления радиосвязи через толщу земной поверхности или моря (например, для связи с подводными лодками, находящимися в погруженном состоянии) применимы только длинные и сверхдлинные волны.