НОВОСТИ    БИБЛИОТЕКА    ССЫЛКИ    О САЙТЕ







Современная терраса: материалы и оборудование

предыдущая главасодержаниеследующая глава

Глава восьмая. Однофазный переменный ток

§ 57. Получение переменного тока

В начальной стадии развития электротехники применяли исключительно постоянный ток. В настоящее время преимущественное распространение получил переменный ток.

Постоянный ток, необходимый в промышленности на электрифицированном транспорте, в электросвязи и т. д., в большинстве случаев получают путем выпрямления переменного тока. Преимуществами переменного тока являются: возможность трансформации и передачи на далекие расстояния, более простое устройство генераторов переменного тока, более простые в устройстве и надежные в эксплуатации электродвигатели переменного тока и т. д.

Рассмотрим принцип получения переменного тока в результате преобразования механической энергии в электрическую.

Пусть имеется однородное магнитное поле, образованное между полюсами N - S электромагнита (рис. 120, а). Внутри поля под действием посторонней силы вращается по окружности в сторону движения часовой стрелки металлический прямолинейный проводник. Как известно, пересечение проводником магнитных линий приведет к появлению в проводнике индуктированной э.д.с. Величина этой э.д.с., как было указано ранее, зависит от величины магнитной индукции В, активной длины проводника l, скорости пересечения проводником магнитных линий υ и синуса угла α между направлением движения проводника и направлением магнитного поля:

e = Blυ sin α.
Рис. 120. Получение переменной э.д.с.: а - вращение проводника в однородном магнитном поле, б - график изменения переменной э.д.с
Рис. 120. Получение переменной э.д.с.: а - вращение проводника в однородном магнитном поле, б - график изменения переменной э.д.с

Разложим окружную скорость υ на две составляющие - нормальную и тангенциальную по отношению к направлению магнитной индукции В, как было показано в § 45. Нормальная составляющая скорости υn обусловливает наводимую э.д.с. индукции и равна

υn = υ sin α.

Тангенциальная составляющая скорости υt не принимает участия в создании индуктированной э.д.с. и равна

υt = υ cos α;

при α = 90° нормальная составляющая скорости

υn = υ sin α = υ sin 90° = υ,

т. е. в этом случае нормальная составляющая скорости имеет максимальное значение. Такое же значение имеет в этот момент величина индуктированной э.д.с. в проводнике

е = Blυ = Еm,

откуда общее выражение для э.д.с. в проводнике будет

е = Em sin α, или e ≡ sin α.

При движении проводник будет занимать различные положения. На чертеже положения проводника даны через каждые 45° угла поворота. Рассматривая отдельные положения проводника, мы видим, что угол пересечения а меняется и, кроме того, при переходе проводника через нейтральную линию направление индуктированной э.д.с., определяемое по правилу правой руки, также меняется.

За один полный оборот проводника э.д.с. в нем сначала увеличивается от нуля до максимального значения (+Ем), затем уменьшается до нуля и, изменив свое направление, вновь увеличивается до максимального значения (-Eм) и вновь уменьшается до нуля. При дальнейшем движении проводника указанные изменения э.д.с. будут повторяться.

Для наглядного представления о ходе изменения индуктированной э.д.с. в проводнике воспользуемся графическим методом. Проведем две взаимно перпендикулярные оси (рис. 120, б). На горизонтальной оси в одном масштабе отложим углы поворота проводника, а на вертикальной в другом масштабе - величину э.д.с., индуктированную в проводнике в каждый момент времени. Если э.д.с., индуктированную в проводнике при прохождении его под южным полюсом, считать положительной и откладывать от горизонтальной оси вверх, то э.д.с., индуктированную в проводнике при прохождении его под северным полюсом, следует считать отрицательной и откладывать от горизонтальной оси вниз. Проведя затем через концы отрезков, изображающих в масштабе величины э.д.с., непрерывную линию, получим кривую, называемую синусоидой. При помощи кривой мы можем легко определить величину э.д.с. в любой момент времени. Для этого на горизонтальной оси откладываем интересующий нас угол поворота проводника от начального положения. Затем от этой точки восставляем перпендикуляр. Отрезок, заключенный между точками пересечения перпендикуляра с кривой и горизонтальной осью, будет в масштабе выражать величину индуктированной э.д.с. в проводнике в этот момент времени.

В нашем примере проводник вращался в однородном магнитном поле. В проводнике индуктировалась переменная э.д.с., изменяющаяся по закону синуса. Такая э.д.с. называется синусоидальной.

В дальнейшем мы увидим, что электротехника предпочитает пользоваться переменными величинами, изменяющимися по синусоидальному закону.

Устройство, показанное на рис. 121, позволяет снимать и отводить во внешнюю цепь переменную э.д.с. Согнутый в виде рамки проводник вращается в магнитном поле с постоянной скоростью со под действием посторонней силы. Концы рамки присоединены к двум медным кольцам 3 и 4, на которых наложены две угольные щетки 5 и 6. Во внешней цепи будет протекать изменяющийся по величине и направлению ток. Такой ток называется переменным в отличие от постоянного, который дают гальванические элементы и аккумуляторы. Переменный ток на электрических схемах принято обозначать условным знаком ∼.

Рис. 121. Устройство для отвода переменного тока от ротора генератора
Рис. 121. Устройство для отвода переменного тока от ротора генератора

В создании индуктированной э.д.с. будут участвовать не все стороны рамки, а лишь те, которые пересекают магнитные линии. Эти стороны называются активными сторонами (на рис. 121 они обозначены цифрами 1 и 2).

Недостатком рассмотренного выше устройства является трудность создания однородного магнитного поля и большое магнитное сопротивление магнитному потоку, который значительный путь проходит по воздуху.

В конструкциях электрических машин между полюсами электромагнита помещают стальной барабан, в пазы которого укладывают проводники обмотки. Такая конструкция машины представлена на рис. 122. Магнитным линиям в этом случае приходится проходить по воздуху короткий путь между сталью полюсов и барабана. Магнитные линии, проходя воздушный промежуток, будут входить в барабан в радиальном направлении и в таком же направлении будут выходить из него, чтобы попасть в другой полюс. В этом случае направление окружной скорости в каждый момент перпендикулярно направлению магнитных линий, т. е. скорость будет все время υ = υn, ∠α = 90°.

Рис. 122. Магнитный поток машины при наличии стального барабана
Рис. 122. Магнитный поток машины при наличии стального барабана

Для получения индуктированной э.д.с. в генераторах безразлично, будет ли движущийся проводник пересекать неподвижное магнитное поле или движущееся поле будет пересекать неподвижный проводник. В рассмотренной конструкции обмотка, где индуктировалась переменная э.д.с., размещалась на вращающейся части машины - роторе, а полюса располагались на неподвижной части машины - статоре. Однако для того чтобы поставить якорную обмотку переменного тока в более благоприятные условия, ее обычно располагают на статоре, а обмотку возбуждения полюсов помещают на роторе*. Генератор такой конструкции представлен на рис. 123.

* (Обмотки переменного тока в современных генераторах рассчитываются на высокие напряжения и на весьма значительные токи. Неподвижную якорную обмотку легче изолировать и от нее проще отвести значительный ток во внешнюю цепь.)

Рис. 123. Двухполюсный генератор переменного тока: 1 - статор, 2 - часть обмотки переменного тока, 3 - ротор, 4 - обмотка возбуждения
Рис. 123. Двухполюсный генератор переменного тока: 1 - статор, 2 - часть обмотки переменного тока, 3 - ротор, 4 - обмотка возбуждения

Постоянный ток, необходимый для создания магнитного потока машины, подается в обмотку возбуждения от специального генератора-возбудителя постоянного тока, сидящего на одном валу с генератором переменного тока, или от выпрямительного устройства.

Стремление получить синусоидальную э.д.с. заставляет конструктора машины переменного тока придать такую форму полюсным наконечникам, при которой магнитная индукция (плотность магнитных линий) в воздушном зазоре изменялась бы по закону синуса:

B = Bм sin α,

где Вм - максимальная магнитная индукция в воздушном зазоре при α = 90°, т. е.

В = Вм sin α = Вм sin 90° = Вм.

В этот момент э.д.с., индуктированная в проводнике, также имеет максимальное значение:

e = Bмlυ = Eм,

откуда общее выражение для э.д.с. в проводнике будет

е = Ем sin α
предыдущая главасодержаниеследующая глава







© RATELI.RU, 2010-2020
При использовании материалов сайта активной гиперссылки обязательна:
http://rateli.ru/ 'Радиотехника'


Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь