НОВОСТИ    БИБЛИОТЕКА    ССЫЛКИ    О САЙТЕ




предыдущая главасодержаниеследующая глава

§ 1.4. Распространение плоских радиоволн в полупроводящей среде

Электромагнитные свойства полупроводящей среды характеризуются абсолютной диэлектрической проницаемостью εа (или относительной диэлектрической проницаемостью ε) и удельной электрической проводимостью γ. Будем рассматривать немагнитные среды, для которых μа = μ0.

Наиболее простым случаем является распространение радиоволн в идеальном диэлектрике, для которого γ = 0, ε = const. Распространение плоской волны в такой среде описывается уравнением [1]:


где Е - мгновенное значение напряженности электрического поля; Е0m - комплексная амплитуда напряженности электрического поля; r - расстояние, которое волна прошла в данной среде.

Комплексные амплитуды напряженностей магнитного Нm и электрического Еm полей связаны соотношением [1]


где  
волновое сопротивление среды.

Электрическое и магнитное поля изменяются во времени синфазно.

Рассмотрим теперь, как изменится уравнение плоской волны в среде с потерями, т. е. в полупроводящей среде. Для сравнения запишем первое уравнение Максвелла соответственно для идеального диэлектрика и для диэлектрика с потерями:


Если ввести понятие комплексной диэлектрической проницаемости


то уравнение (1.34) запишется формально точно так же, как и уравнение (1.33):


Использование комплексной диэлектрической проницаемости позволяет получить выводы, относящиеся к распространению радиоволн в полупроводящей среде, из соответствующих формул для идеального диэлектрика путем замены в них вещественной диэлектрической проницаемости εа на комплексное значение εа (или заменой ε на ε). Величину εа можно записать иначе, выразив в уравнении (1.35) круговую частоту через длину волны и подставив числовое значение электрической постоянной:


Величина  
имеет физический смысл отношения плотности токов проводимости к плотности токов смещения. Действительно, поскольку ток проводимости равен γЕ, а ток смещения равен ωεaЕ, то, поделив одно на другое, получим


Следовательно, при  
в среде преобладает плотность тока смещения, и среда по своим свойствам приближается к диэлектрику. Если же  
то в среде преобладает плотность тока проводимости, и среда по своим свойствам приближается к проводнику.

Мгновенное значение напряженности электрического поля при распространении плоской волны в полупроводящей среде записывается следующим образом:


Обозначая


перепишем выражение (1.39) с учетом условия (1.40):

Е = Е0m еj (ωt - βr) - αr. (1.41)

Подставляя в уравнение (1.32) условие (1.40) и определяя модуль и фазу полученного выражения, запишем


где


Из (1.43) видно, что составляющие электрического и магнитного поля сдвинуты по фазе на угол φ.

Величина α характеризует потери мощности в среде и называется коэффициентом поглощения. Физически потери обусловлены переходом энергии электромагнитных волн в тепловую энергию движения молекул.

Величина β характеризует изменение фазы волны, т. е. скорость распространения волны в данной среде.

Фазовую скорость распространения волны υф = dr / dt определяют, как скорость перемещения точки постоянной фазы, для которой

ωt - βr = const. (1.44)

Записав полный дифференциал этого выражения:

ωdt - βdr = 0,

можно определить υф:

υф = ω / β. (1.45)

При относительном перемещении передатчика и приемника с радиальной скоростью uR (составляющая скорости источника в направлении распространения волны) фаза воли (ωt - βr) меняется, что можно рассматривать, как изменение частоты колебаний. Принимаемая частота ωд, называемая частотой Допплера, оказывается равной


Разницу в величинах частот, передаваемых и принимаемых колебаний, называют допплеровским смещением частоты и определяют как


Частота принимаемых колебаний зависит от свойств среды, возрастает при удалении передатчика и приемника и снижается при их сближении.

Отношение


называют коэффициентом преломления среды.

Длина волны в среде с учетом (1.45) равна

λср = υф / f = 2π / β = λ / n. (1.49)

Выразим коэффициенты α и β через параметры среды. Согласно условию (1.40), можно записать


С другой стороны, из (1.37) следует, что


Правые части уравнений (1.50) и (1.51) равны. Приравнивая их действительные и мнимые части, а также решая совместно полученные уравнения, находим:


Перед внешними и внутренними радикалами берем положительные знаки, так как величины α и β считаем действительными, и за направление распространения принимаем направление возрастания расстояния r.

В некоторых встречающихся на практике случаях формулы могут быть значительно упрощены.

При ε >> 60γλ, пренебрегая в (1.53) вторым слагаемым, получаем:


В формуле (1.52) нельзя просто пренебречь вторым слагаемым. Применяя к внутреннему радикалу бином Ньютона, получаем


При ε << 60 γλ в выражениях (1.52) и (1.53) можно пренебречь единицей по сравнению с  
Тогда


предыдущая главасодержаниеследующая глава


ИНТЕРЕСНО:
  • Отечественный персональный компьютер 'Эльбрус-401 РС' пошёл в серийное производство
  • Появился первый официально признанный «полностью российский чип»
  • 'Ангстрем' представил полностью отечественную линейку изделий силовой электроники
  • Samsung первой в мире запустила производство 10-нанометровых чипов
  • На базе российского процессора КОМДИВ-64 создан защищенный компьютер для военных
  • Названа цена разработки российских процессоров «Эльбрус»
  • В России разработан микроконтроллер «электронного мозга» для транспорта и робототехники
  • «Ангстрем» разработал уникальные космические транзисторы
  • Микрон вошёл в ОЭЗ с проектами производства чипов 65-45-28 нм и собственной территорией
  • Основной российский производитель электролитических конденсаторов получил 280 млн на новый импортозамещающий проект
  • В Томске разработана технология синтеза вещества для производства прозрачной электроники
  • У нас тут своя архитектура
  • Роберт Бауэр - создатель SAGFET-транзисторов
  • В России выпустили 6-ядерный 40-нм процессор
  • После 4 лет простоя Егоршинский радиозавод модернизирует производство
  • Завод радиоэлектроники открыт 'Микраном' в Томске
  • Джек Сент Клер Килби - изобретатель интегральных схем






  • © Сенченко Антонина Николаевна, Злыгостев Алексей Сергеевич, 2010-2017
    При копировании обязательна установка активной ссылки:
    http://rateli.ru/ 'rateli.ru: Радиотехника'